Introduction
Splitting arrays in NumPy allows you to divide an array into multiple sub-arrays. This can be useful for various data manipulation tasks. In this chapter, you will learn how to split arrays using different NumPy functions such as split
, array_split
, hsplit
, and vsplit
.
Importing NumPy
First, import NumPy in your script or notebook:
import numpy as np
Using split
The split
function divides an array into multiple sub-arrays of equal size.
Example: Splitting a 1D Array
# Creating a 1D array
arr = np.array([1, 2, 3, 4, 5, 6])
# Splitting the array into 3 equal parts
result = np.split(arr, 3)
print(result)
Output:
[array([1, 2]), array([3, 4]), array([5, 6])]
Example: Splitting a 2D Array
# Creating a 2D array
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
# Splitting the array into 2 equal parts along the second axis (columns)
result = np.split(arr, 2, axis=1)
print(result)
Output:
[array([[1, 2],
[5, 6]]), array([[3, 4],
[7, 8]])]
Using array_split
The array_split
function is similar to split
, but it allows you to specify uneven splits if the array cannot be divided equally.
Example: Splitting a 1D Array into Unequal Parts
# Creating a 1D array
arr = np.array([1, 2, 3, 4, 5, 6, 7])
# Splitting the array into 3 parts
result = np.array_split(arr, 3)
print(result)
Output:
[array([1, 2, 3]), array([4, 5]), array([6, 7])]
Example: Splitting a 2D Array into Unequal Parts
# Creating a 2D array
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
# Splitting the array into 3 parts along the second axis (columns)
result = np.array_split(arr, 3, axis=1)
print(result)
Output:
[array([[1, 2],
[5, 6]]), array([[3],
[7]]), array([[4],
[8]])]
Using hsplit
The hsplit
function splits an array horizontally along the second axis (columns).
Example: Horizontal Split of a 2D Array
# Creating a 2D array
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
# Splitting the array into 2 parts
result = np.hsplit(arr, 2)
print(result)
Output:
[array([[1, 2],
[5, 6]]), array([[3, 4],
[7, 8]])]
Using vsplit
The vsplit
function splits an array vertically along the first axis (rows).
Example: Vertical Split of a 2D Array
# Creating a 2D array
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
# Splitting the array into 3 parts
result = np.vsplit(arr, 3)
print(result)
Output:
[array([[1, 2, 3, 4]]), array([[5, 6, 7, 8]]), array([[ 9, 10, 11, 12]])]
Using dsplit
The dsplit
function splits an array along the third axis (depth). This is useful for 3D arrays.
Example: Depth-Wise Split of a 3D Array
# Creating a 3D array
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
# Splitting the array into 3 parts along the depth axis
result = np.dsplit(arr, 3)
print(result)
Output:
[array([[[ 1],
[ 4]],
[[ 7],
[10]]]), array([[[ 2],
[ 5]],
[[ 8],
[11]]]), array([[[ 3],
[ 6]],
[[ 9],
[12]]])]
Conclusion
Splitting arrays in NumPy is straightforward with functions like split
, array_split
, hsplit
, vsplit
, and dsplit
. These functions allow you to divide arrays into sub-arrays along different axes, making it easy to manipulate and analyze your data efficiently.